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CS-D at Mont Terri : 
The support of the Mont Terri rock laboratory to low carbon economy



What do we want to learn
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Modified after Benson & Cook, 2005

Direct observations of fluid 
migration along a fault and of 
its interaction with the 
surrounding environment

Validate instrumentation and 
methods for monitoring and 
imaging fluid transport 

Validate Thermo-Hydro-
Mechanical-Chemical (THCM) 
simulations

A. Zappone



• Swiss geological environment
• Underground rock Labs are ideal  to bridge between laboratory scale  

and reservoirscle. 
• We can observe «in-situ» and in detail the processes. 

centimeter scale decameter scale km scale

Why in Mon TerriWhy in Mont Terri
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Concept
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Modified after Benson & Cook, 2005

Inject CO2 saturated water and tracers 
in Mont Terri main fault: 
- Continuous/long term (8-10 month)
- Pulse/ pressure increase steps (at 
beginning and at end of the injection 
phase)
Scale: 1-10 m3 water -> rock volume

Monitor injection effects: 
- Electrical conductivity, tracers, fluid 
samples
- Strain = Extensometers, FO
- Pressure
- Microseismic events
- Vp,Vs changes…….

Lab scale mechanical  characterization 

Numerical simulations (pre and post) 

Charac. phase: 4 month
Injection phase: 8 month
Post injection phase: 4 
month



2019 2020 2021
CS-D experiment I II III IV I II III IV I II

Phase 24 Phase 25 Phase 26

Steps (Phases 24-26):
Step 1.7 baselines on seismic parameters, pore pressure, 

temperature, electrical resistivity, pH 

Step 2.1: Pulse tests with water
Step 2.2: Steady state injection experiment of CO2

enriched water
Step 2.3: Repeated pulse tests 
Step 2.4: monitoring operations with fiber optics, 

extensometers microseismic, electrical resistivity pH, 
pressure 

Step 2.5:fluid sampling and analysis

Step 3.1: sampling boreholes for 
geochemical/geomechanical analysis (post-mortem)

Step 3.2: sealants injections or remediation tests

Step 3.3: Data processing and modelling

Timeline
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We are here

Prol.

Postp.
Postp.



Installation
Instrumentation
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May 20th 2018 

Injection 
borhole



Bottom hole geophone Electrical resistivity sensor Chain extensometer Fiber optic DSS

Geophone array

Seismic piezo-sensors

• 27 Borehole Geophones each with 3-components
• 30 Geophones on the surface (1-component)
• 8  Piezosensors in the boreholes
• 16 Piezosensors on the surface
• Chain extensometers: 12 measuring sections for axial 

deformation and temperatures
• DSS FO in all boreholes

Geophones: 0.1-2 kHz; piezo: 1-100 kHz 

Geophysical borehole monitoring  

Instrumentation
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Instrumentation
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Phase 1:
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connection?

Fault characterization & injection tests
by Q. Wenning
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Hydraulic characterization
By AP. Rinaldi

Prolonged step test: 
- P increased by steps of 300 
kPa, 
- Pmax 4800 kPa. 
- Step 28/30 hours 

Aim: understand the system 
response to pressurization
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Analysis of pressure decay (3 days) : 
transmissivity in the order of 10-13 m2/s 
(~10-21 m2 permeability)

The value is closer to previous estimates 
(Marschall et al. 2003)
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Cross-hole 
VP-tomogram 
between D3-D4

Cross-hole VP-
tomogram 
between D3-D5

D3

D5

Seismic site characterization 
(D3-D4 crosshole,  D3-D5 crosshole)
By M. Grab

Findings:
• Main fault well detectable as a low 

velocity zone 
- within fault: VP = 2200m/s  
- below and above: VP > 2500 m/s

• Reduced anisotropy within the fault

• Anisotropy larger for the foot wall than 
for the hanging wall, and not a perfect 
transversely anisotropic media



Seismic experiments during 
step-up injection

Single Shot after 
each step

Decrease in VP in the vicinity of 
the injection interval (c.a. 30 m/s)

Interpretation: poroelastic effects during increase of injection 
pressures (increase of pore pressure => reduction of effective 
pressure). A. Zappone 16



Phase 1:
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Local + Distributed Deformation Measurements

- Different types of optical fiber based sensors:
Bragg for local strain (SIMFIP) 
Brillouin for distributed temperature and strain (DTS and DSS)
Rayleigh for distributed acoustic (DAS)

- 5 bi-axial tiltmeters set at the gallery floor
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Deformation and slip during break through
By Y. Guglielmi, D. Rebscher and A.P. Rinaldi

Excavation
Front

Findings: 
Reverse shear to the NW
During excavation

About 150 microns shear

Normal opening
After excavation

Simfip

Estensimeter



• Fault Transmissivity: ~10-13 m2/s ; Permeability:  ~10-21 m2

• Fault opening pressure c.a. 4.8 MPa

• Seismic velocities are sensible to pore pressure variation in the system 
with c.a. ~1 % variation (P waves) 

• No seismicity was detected during injection activities

• Fault response to fault excavation (collaboration with FS-B & BGR)
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Some observations from Phase 1 
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Phase 2:
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Injection of CO2-saturated-fluid: flow-rate

• Constant pressure of 4.5 MPa
• Injection fluid: Pearson water+Kr+CO2 (mixed at about 2.2 MPa)

Shut-in/restart
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• Time after shut-in 
(4.5 to 4.2 MPa)

• Time after restart 
(4.8 to 4.5 MPa)
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Fault self-sealing?
Swelling?

Injection of CO2-saturated-fluid:  pressure

By AP. Rinaldi



Evidence for injected fluid at 
monitoring well (CO2)?

Increased He, indication for the fluid is 
mixed with formation water?
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Monitoring dissolved gases with mass-spec

CO2 saturated fluid ?

By C. Roques



D1 D1+CO2 D2

pH 7.05 5.5 7.7

El. Cond
(mS/cm) 25.2 23.8 32

Values at atmospheric conditions

At installation: two different waters in 
boreholes D1 and D2
Values at equilibrium quite different from 
atmospheric
Hard to determine CO2 arrival at 
monitoring well.

D2?

D1+CO2?

Mixing with 
formation 
water?

Dilution 
due to 
sampling
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Electrical conductivity and pH



• Fault decreases in permeability almost immediately ?

• The spectrometer detects CO2 at the monitoring borehole after December. 

• pH and EC are hard to interpret

(The current increase in pH after could indicate fluid-rock interaction). 

Moreover….new “perturbations” to the system are coming….
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Some observations from Phase 2 



Phase 2:
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CS-D/FS-B collaboration

~24 Months Monitoring (2019 – 2020)

MPa
4.0-
3.5

CO2 brine CO2 brineH2O H2O H2O+Sealant

Active Rupture patch Passive Rupture patch

Injection CO2 patch Post-Injection  CO2 patch

Injection Water patch Post-Injection  Water patch
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• We need to collect fluid sample from unaffected interval to better 
understand the evolution

• We need to collect further observation on gas contents
• We need to develop numerical simulation to better understand the 

pressure evolution
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