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What do we want to learn
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Direct observations of fluid
migration along a fault and of
its interaction with the
surrounding environment

Validate instrumentation and
methods for monitoring and
imaging fluid transport

Validate Thermo-Hydro-
Mechanical-Chemical (THCM)
simulations



Why in Mont Terri

» Swiss geological environment

* Underground rock Labs are ideal to bridge between laboratory scale
and reservoirscle.

* We can observe «in-situ» and in detail the processes.
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Concept
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Inject CO, saturated water and tracers
in Mont Terri main fault:

- Continuous/long term (8-10 month)
- Pulse/ pressure increase steps (at
beginning and at end of the injection
phase)

Scale: 1-10 m3 water -> rock volume

Monitor injection effects:

- Electrical conductivity, tracers, fluid
samples

- Strain = Extensometers, FO

- Pressure

- Microseismic events

- Vp,Vs changes.......

Lab scale mechanical characterization

Numerical simulations (pre and post)
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Timeline

2010 | 2020 | 2021
CS-D experiment | Il 1} \" | 1] 1l I\ [ Il

Phase 24 Phase 25 Phase 26
Steps (Phases 24-26):

Step 1.7 baselines on seismic p eters, pore pressure,

temperature, electrical resistivity, pH
Step 2.1: Pulse tests with water
Step 2.2: Steady state injection experiment of CO,

enriched water
Step 2.3: Repeated pulse tests

Step 2.4: monitoring operations with fiber optics,
extensometers microseismic, electrical resistivity pH,
pressure

Step 2.5:fluid sampling and analysis

Step 3.1: sampling boreholes for
geochemical/geomechanical analysis (post-mortem)

Step 3.2: sealants injections or remediation tests

Step 3.3: Data processing and modelling

Site characterization We are here o gl ld
2 1%tsteady-state inje 2" steady-state injection
skl latian iribial basts CO2 saturated water CO2 saturated water
Break through F5-B injection

Aug Sep Oct Nov Dec| Jan'Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deq Jan Feb Mar
2018 2019 2020



Installation
Instrumentation e
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Instrumentation

Geophysical borehole monitoring

» 27 Borehole Geophones each with 3-components

* 30 Geophones on the surface (1-component)

* 8 Piezosensors in the boreholes

* 16 Piezosensors on the surface

* Chain extensometers: 12 measuring sections for axial
deformation and temperatures

* DSSFOinall boreholes

Geophones: 0.1-2 kHz; piezo: 1-100 kHz

Bottom hole geophone Electrical resistivity sensor

Piezo-sensors

Top packer PVC casings .
Chain extensometer
Injection

chamber

Cross-hole

Simfip probe

Electrode array
for fluid
conductivity

Seismic piezo-sensors

Bottom packer

Seismic >
Sparker

<%
Bottom-hole
geophones,

FO cables

6-fold packer
with P/T monitoring
and fluid sampling intervals

4-fold packer system
with P/T monitoring
and fluid injection intervals

Fiber optic DSS

Chain extensometer
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Instrumentation
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Site characterization
&
Installation Initial tests

Brea
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2018

Phase 1:
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Fault characterization & injection tests
by Q. Wenning Distance [ o
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Elevation [m.a.s.l.]
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Hydraulic characterization

By AP. Rinaldi
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Seismic site characterization
(D3-D4 crosshole, D3-D5 crosshole)

By M. Grab

Findings:
* Main fault well detectable as a low
velocity zone
- within fault: V, = 2200m/s
- below and above: V, > 2500 m/s

* Reduced anisotropy within the fault

* Anisotropy larger for the foot wall than
for the hanging wall, and not a perfect

transversely anisotropic media
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4500 MPa

Seismic experiments during
step-up injection
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Interpretation: poroelastic effects during increase of injection
pressures (increase of pore pressure => reduction of effective
pressure). A. Zappone 16
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Phase 1:

Break through
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Deformation and slip during break through
By Y. Guglielmi, D. Rebscher and A.P. Rinaldi

- Different types of optical fiber based sensors:

Bragg for local strain (SIMFIP) ®

Brillouin for distributed temperature and strain (DTS and DSS)

Rayleigh for distributed acoustic (DAS)

- 5 bi-axial tiltmeters set at the gallery floorA
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Some observations from Phase 1 >

Fault Transmissivity: ~1013 m?/s ; Permeability: ~102! m?
Fault opening pressure c.a. 4.8 MPa

Seismic velocities are sensible to pore pressure variation in the system
with c.a. ~1 % variation (P waves)

No seismicity was detected during injection activities

Fault response to fault excavation (collaboration with FS-B & BGR)

A. Zappone 20



Phase 2:

Site characterization
& 1**steady-state injection
Installation Initial tests C0O2 saturated water

Break through
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2" steady-state injection
CO2 saturated water
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2020




Injection of CO,-saturated-fluid: flow-rate
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* Injection fluid: Pearson water+Kr+CO, (mixed at about 2.2 MPa)
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Pressure (MPa)

Injection of CO,-saturated-fluid: pressure

« Time after shut-in
(4.5 to 4.2 MPa)
« Time after restart
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Monitoring dissolved gases with mass-spec
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Evidence for injected fluid at
monitoring well (CO,)?

Increased He, indication for the fluid is
mixed with formation water?
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Electrlcal conduct|V|ty and pH
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At installation: two different waters in
boreholes D1 and D2

pH 7.05 5.5 Values at equilibrium quite different from
El. Cond 55 5 - atmospheric
(mS/cm)

Hard to determine CO, arrival at

Values at atmospheric conditions
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Some observations from Phase 2

* Fault decreases in permeability almost immediately ?

* The spectrometer detects CO, at the monitoring borehole after December.

* pH and EC are hard to interpret

(The current increase in pH after could indicate fluid-rock interaction).

Moreover....new “perturbations” to the system are coming....

A. Zappone 26



Phase 2:

Site characterization

& 1 steady-state injection 2" steady-state injection
lsdrEiiG Initial tests CO2 saturated water CO2 saturated water
Break through F5-B injection
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CS-D/FS-B collaboration

Active Rupture patch Passive Rupture patch |

H,O+Sealant

H,O CO, brine H,O

v

CO, brine

A

~24 Months Monitoring (2019 — 2020)

Injection Water patch Post-Injection Water patch '

Injection CO, patch Q Post-Injection CO, patch \ 28



We need to collect fluid sample from unaffected interval to better
understand the evolution

We need to collect further observation on gas contents

We need to develop numerical simulation to better understand the
pressure evolution

S0
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