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» Agroscope remote sensing team
» Agroscope remote sensing platform
» Spatial Data Science for agroecological applications
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Agroecology

... is the study of relationships between plants, animals, people, and their
environment - and the balance between these relationships in the context of farming.

(adapted from soilassociation.org)

o
o
o
v
w
o
=
o

<

Helge Aasen | 11.03.2022 | 3
helge.aasen@agroscope.admin.ch




Remote sensing in the context of agroecology

Mapping and monitoring

land use and its change
Impact of climate change on the agricultural
systems

Impact of agricultural practices
Investigate ecophysiological processes

(Rhine valley, Switzerland)

—



Agroscope Remote Sensing Team

» Founded end of 2021

» Competence centre for remote sensing in an agroecological context
» Works across spatial and temporal scales

» Bridges the gap between research and application

» Integrates across Agroscope divisions and beyond

Agroscope
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Agroscope Remote Sensing Platform
Concept

» Build remote sensing infrastructure

(hardware, software, algorithms, protocols)
Implemented in python
Currently on premises

» Develop a remote sensing user network
= Symposium: Remote Sensing for AgroEcology

[}
o
o
v
w
o
S
o
<

» Compile, enhance and secure remote sensing knowledge

» Link to GeoWissensPlattform (GWP)

Helge Aasen | 11.03.2022 | 6
helge.aasen@agroscope.admin.ch




Implementation: AgriSatPy

In-house developed Python 3.x package to handle (any kind of) raster data using an
object-oriented programming interface

= Easy data visualization, manipulation and conversion (geopandas, xarray, numpy,
hdf5, ...)

= Light-weight Python API

Special capabilities for handling Sentinel-2 data (*.SAFE datasets)
= Fetching data from CREODIAS
= Satellite-metadata base (PostgreSQL + PostGIS)

= Cross-tile extraction of (multi-year) Sentinel-2 data in a Google-Earth-Engine like
approach
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Band

+ geo_info: Geolnfo
+ wavelength_info (opt): Wavelengthinfo
+ values: np.ndarray, np.ma.MaskedArray,

+ name: str
+ alias (opt): str

zarr.Array 0.*

Implementation: AgriSatPy

RasterCollection

+ band_names: List[str]
+ band_aliases (opt.) List[str]
+ collection: MutableMapping[Band]

+ add_band()
+ read_pixels(): geopandas.GeoDataFrame
+to_dataframe(): geopandas.GeoDataFrame |4

+ to_xarray(): xarray.DataArray
+ to_dataframe(): geopandas.GeoDataFrame

+ get_summaries(): pandas.DataFrame

+ mask()
+ resample()
+ reproject()

+ to_rasterio()

0.4 + to_xarray(): xarray.DataArray

Py [T
0.4 1 b}
Geolnfo Wavelengthinfo

+ CRS: CRS|EPSG
+ ULX: int|float
+ ULY: int/float
+PIXRES_X: int+float
+PIXRES_Y: int|float
+NROWS: int
+NCOLS: int

+ central_wvl: int|float
+ band_widht: int|float
+ unit: str

SceneProperties

+ get values(): np.ndarray
+ plot_band(): plt.figure

+ resample()

+ mask()

+ drop_band()

+ reproject()

+ calc_si()

[ ]

Sentinel2 lOtherSensorHandler|

+ SENsor props

+ as_affine(): Tuple

+ from_safe +
+ plot_scl() sensor_methods()

+ get_scl_stats()

+ acquisition_date: date
+ sensor: str
+ platform: str

+ processing_level: str

11.03.2022 | 8
helge.aasen@agroscope.admin.ch



Implementation: AgriSatPy

= Country-wide Sentinel-2
data availability

Valid Sentinel-2 L2A
Observations between
01/01/2017 and
31/12/2021

Valid Observation:
Scene Classification
Layer was either
Vegetation (class 4) or
Bare Soil (class 5).

— 52 Relative Orbits
. [ swiss Boundaries
Valid Sentinel-2 Observations [-]
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Biophysical trait estimation PN

Swiss NATIONAL SCIENCE FOUNDATION
Winter Wheat
(#S2 10m Pixels: 31829)

GPR estimated LAI GPR derlved uncertalnty
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=  Physically based radiative transfer models (Spart)
= Machine learning (Gaussian Process Regression) (PhenomEn project, Lukas Graf)
= Biomass, LAI, Cab, protein, phenology, soil parameter ... e e oo atmimch




Crop mapping from image time series: Deep learning
with multi-scale label hierarchies

Level 1

|
|
Field Crops [

|
[
|
f
I\
% Grassland
\
\
\
g I\
: ‘.‘
w I\
o 1
= |
o \\
o ‘|
==t

Turkoglu, M.O., D’Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K., Wegner, J.D., 2021. Crop mapping from image time
series: Deep learning with multi-scale label hierarchies. https://doi.org/10.1016/j.rse.2021.112603
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Crop mapping from image time series: Deep learning

with multi-scale label hierarchies

ZueriCrop dataset 2019

ZueriCrop dataset field size distribution
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71 Sentinel-2 level-2A Scenes

ZueriCrop dataset class distribution: pixel counts
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Turkoglu, M.O., D’Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K., Wegner, J.D., 2021. Crop mapping from image time
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Crop mapping from image time series: Deep learning
with multi-scale label hierarchies

Level 1 Level 2 Level 3

Multi-stage, convolutional STAR
network (ms-convSTAR)
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Crop mapping from image time series: Deep learning
with multi-scale label hierarchies
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Conclusion

» Resolution and revisit frequency of current and upcoming satellite platforms have
huge potential

» Spatial Data Science is needed to unlock it
» Data organization (storage and databases)
» Data interpretation (machine (deep) learning together with domain experts)
» (Interpreted) Data publishing and access

» Main ingredients for success
» Motivated and well educated people
» Data accessibility (training data)
» Interaction with stakeholders
» Funding Helge Aasen [ 11.03.2022 | 15
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Thanks for the attention

Helge Aasen

helge.aasen@agroscope.admin.ch
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